If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-3=49
We move all terms to the left:
n^2-3-(49)=0
We add all the numbers together, and all the variables
n^2-52=0
a = 1; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·1·(-52)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{13}}{2*1}=\frac{0-4\sqrt{13}}{2} =-\frac{4\sqrt{13}}{2} =-2\sqrt{13} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{13}}{2*1}=\frac{0+4\sqrt{13}}{2} =\frac{4\sqrt{13}}{2} =2\sqrt{13} $
| 5x=2x+90° | | x²+8x=-8 | | 3x+9/5=6 | | Y=0,4x+1 | | 1/4+y=3/16 | | r/2.4-6.9=-0.4 | | 2x+7=1+4x | | 19x-95=570 | | 9x-12=6x+4 | | 2x2-4=46 | | 5-x/3=3 | | 2x+5=18 | | e^=0.04 | | 2.9x4.1=11.89 | | 445=45+(n-1)*1 | | 5x+2=-5+3x+25 | | 251=11+(n-1)*4 | | 121=x-4 | | 3x-11=6x+3 | | 251=11+(n-1)⋅4 | | 5^(4x-1)=26 | | 16-2t=5t+11 | | 5m-4=m | | 9+5a=-5a+29 | | 3x—30+x+3x-28=33 | | 2^x-2=47 | | 6t-12=-6t | | 6(n-6)=6n-30 | | (3x+2)+5=13 | | −18=m/6 | | 3a+5a+4=(3+5)a+4 | | 10+27+x+3x+47=x+26 |